Abdullah Al Sajid

sajidabd90.github.io

github.com/sajidabd90

Research Interests

Hardware Acceleration, Hw/Sw Co-design, Domain-specific Accelerators, HLS, FPGA, ML Edge Deployment, Chip Design Current Research Focus: Acceleration of CNNs and GNNs on resource-constrained devices.

Open to: exploring hardware acceleration across new domains or deeper specialization within existing areas.

Ongoing Independent Investigations

Adaptive Precision CNN with Dynamic Partial Reconfiguration

Investigating cascaded early-exit strategies for medical edge inference

- Exploring Dynamic Partial Reconfiguration for multi-tier classification
- · Goal: balancing diagnostic accuracy with power constraints on resource-limited FPGAs
- Problem Addressed: Medical AI deployment where false negatives are critical but continuous high-precision inference is energy-prohibitive.

Node-Centric GNN Inference on Resource-Constrained FPGAs

Investigating memory-efficient message-passing for edge deployment

- Exploring node-parallel computation patterns
- Goal: reduce memory bandwidth requirements on low-end FPGAs (Zynq-7000 class).
- Problem Addressed: GNN inference feasibility on edge devices where traditional matrix-heavy approaches exceed memory/compute budgets.

Education

University of Dhaka

2020-2025

Bachelor of Science in Electrical and Electronics Engineering (Major: Electronics, Minor: Communications)

Dhaka, Bangladesh

• Relevant Coursework: VLSI Design, Digital Electronics with Verilog, Analog Electronics, Microprocessor and Organization. Semiconductor Technology, Quantum Mechanics, Nanotechnology, Electronic Devices

Research

Thesis: DNN Acceleration in Resource-Constrained Devices with FPGA Implementation

2024-2025

Supervisors: Dr. Mosabber Uddin Ahmed & Dr. Sharnali Islam

- Outcome 1: Accelerated a reduced VGG-11 CNN, achieving 1900 images/s throughput. Models deployed with 1-bit and 2-bit quantization with 2% accuracy drop compared to the FP32 baseline on Pyng-Z2 FPGA
- Outcome 2: Designed and implemented a 2-layer Graph Convolutional Network (GCN) with custom Brevitas layers and QAT. Explored FPGA PS deployment through ONNX at various quantization levels.
- Outcome 3: Identified key bottlenecks in existing frameworks, with plans for enhancement to include support for networks such as GNN/Transformers.

Research Assistant

2022 - 2023

Bangladesh Computational Social Science Lab (BCS2)

Remote, USA

- Broad Contribution 1: Engineered a multi-threaded Python data processing pipeline, achieving a 7x reduction in processing time for arxiv, pwc and scopus datasets. Analyzed the ethical compliance and disclosure strategy of firms in Al-ethics research.
- Broad Contribution 2: Contributed to multiple projects by conducting literature reviews and developing data visualizations to analyze industry involvement in AI research.

Posters & Presentations

Sajid, A. A., Ahmed, M.U., Islam, S., "FPGA Based CNN Accelerator Design for low-power devices". Poster accepted at the Bangladesh AI, Electronics, and Robotics (BEAR) Summit & National Semiconductor Symposium, Dhaka, Bangladesh. (July, 2025)

Relevant Projects

Object Detection using YOLO-v3 on FPGA

Python, Vivado, PetaLinux, Xilinx DNNDK, C++

- Implemented the quantized YOLO-v3 model through DPU (Deep Learning Processing Unit) for object detection on traffic images
- Configured PetaLinux on the ZYNQ PS for management of DPU Inference Engine and post-processing.
- Quantized YOLO-v3 using Xilinx DNNDK, optimizing the model for FPGA resource constraints and improved inference time by 6x compared to CPUs, and similar performance to GPUs while consuming 10x less power.

Classical Simulation of Quantum Computation

C++, Vitis HLS, Vivado, Python

- Implemented a single-qubit classical simulator for Quantum Computing using HLS.
- Utilized the AXI-Streaming interface with DMA and HLS optimizations to achieve 5ns latency (HLS Core) and operation time of 0.0361µs (100k simulations). Investigated resource usage and timing constraints on PYNQ-Z2.
- · Working on extending the design for multi-qubit, multi-gate simulation to explore entanglement.

CORDIC Algorithm Hardware Accelerator

C++, Vitis HLS, Vivado, Python

- Implemented a CORDIC (COordinate Rotation Digital Computer) accelerator using High-Level Synthesis for efficient computation of trigonometric functions.
- · Optimized the design with fixed-point arithmetic, pipelining, and loop unrolling to achieve nanosecond latency.

Experience

Pristine Crossing Point Ltd.

Project Hardware Engineer

2025 - present

Dhaka, Bangladesh

- Led the development, design and deployment of an IoT enabled Water Desalination plant for coastal regions of Bangladesh, providing drinking water for over 2000 residents.
- Led the development, design and deployment of IoT enabled Early-Streamer lightning protection systems for coastal regions of Bangladesh, providing safety during thunderstorms for over 50 households.
- Communication with multiple cross-country teams for the design, development and validation of technical infrastructure for various IoT enabled projects in-progress.

Pristine Crossing Point Ltd.

2021 - 2023

Project Officer (Technical)

Dhaka, Bangladesh

- Worked closely with the Managing Director during the inception phase of the **Solar powered water-filtration system**, among other key projects.
- Performed technical evaluations, international site visits and systems design for deploying renewable systems in remote areas.

Relevant Technical Skills

Languages: C/C++, Python, Verilog, MATLAB, TCL

Frameworks & Libraries: PyTorch, Pytorch-Geometric, Brevitas, ONNX, iVerilog, GTKWAVE

Tools & Platforms: Vivado, Vivado HLS, Vitis, Cadence Virtuoso, OpenLane2, Linux, Blender, PSpice, Git, VirtualBox

Concepts: FPGA Workflow, RTL Design, High-Level Synthesis (HLS), Computer Architecture, Graph data systems, Scheduling,

Binding, Neural Networks, Parallel Computing, Image Processing

Leadership and Training

IEEE SIGHT University of Dhaka

2022-2024

Project Technical Member

- Led deployment of two community-driven solutions: **Archer** (low-cost Linux computing) and **beShuddho** (RO/UV water purification).
- Secured \$2500 IEEE funding and demonstrated leadership in resource management and stakeholder coordination.
- Implemented solutions impacting over 500 individuals in rural communities.

IEEE Student Branch University of Dhaka

2021-2022

Webmaster

- Managed branch websites, implemented subdomains for modular society activities, and enhanced security with plugins and scripts.
- Trained incoming webmasters, conducted sessions, and evaluated member progress.

Relevant Awards

Ulkasemi VLSITHON 2.0

2024

Finalist - RTL & Analog Circuit Design

IEEE EDS Poster Design Competition

2022